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Abstract. The nonlinear diffusion equation arises in many important areas of science and technology and most of
the known exact solutions turn out to be similarity solutions. For a general similarity solution involving an
arbitrary parameter 1, a new integration procedure is proposed which enables first integrals to be obtained for
special values of A. The best known exact solutions arise from this analysis when the integration constant is taken
to be zero and the procedure provides a natural way of deducing other special exact solutions. A new exact solution
is obtained for the power law diffusivity of index - 4/3 and new first integrals are deduced for a general equation
which includes nonlinear cylindrical and spherical symmetrical diffusion and one-dimensional nonlinear diffusion
with an inhomogeneous diffusivity. The procedure has given rise to an extensive number of first-order ordinary
differential equations which include a wide variety of differing physical situations and which warrant further study
either analytically to determine exact integrals or numerically for particular boundary value problems.

1. Introduction

The nonlinear diffusion equation

3c a ac
At ax ( ex) I,(1.1)

arises in many areas in science and engineering and the literature on solutions, both exact
and approximate, is scattered through many diverse disciplines. The soil science literature is
cited by Crank [9] (page 105) and the majority of the references cited here contains numerous
additional references to the various applications of (1.1). For example (1.1) describes the
motion of a thin liquid film spreading under gravity, the flow in thin saturated regions in
porous media and the percolation of a gas through a porous medium. A brief account of
these particular applications and the original references can be found in Lacey, Ockendon
and Tayler [19] which also includes references to other applications.

As far as the author is aware the majority of known "exact" solutions of (1.1) turn out
to be similarity solutions even though originally they might have been derived say by a
separation of variables technique or as a travelling wave solution. (See for example, Boyer
[7] or Ames [1] (page 150) for a separation of variables derivation of the similarity source
solution (2.6).) The known exact solutions of (1.1) are briefly summarized in the following
section. If we examine similarity solutions of (1.1) then it is well known (see for example
either Bluman and Cole [6] (page 295) or Hill [16] (page 140)) that there are three cases for
the diffusivity D(c) to consider, namely D(c) arbitrary, D(c) as a general power law C(c + B)m
where a, P and m denote constants and D(c) as a power law but with index m = - 4/3.
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Here we shall principally be concerned with the general power law diffusivity and we take
(1.1) in the form

ac a / c \
_ = mxx (1.2)

noting that in all the solutions mentioned below we can change x and t to (x - x) and
(t - to) respectively where xo and to are arbitrary constants. Moreover with appropriate care
we can change t to - t and c to c + fB and we leave the details for such modifications to the
reader. It is not difficult to show that (1.2) remains invariant under the one-parameter group

XI = e(A+l)Ex, t = e2 t, c = e2 / "c, (1.3)

where A is an arbitrary constant and accordingly (1.2) admits similarity solutions of the form

c(x, t) = x2A/m(l+A)0(), X = (1.4)

for A # - 1 and where b denotes a function of r which is determined by substitution of (1.4)
into (1.2) and solving the resulting second-order ordinary differential equation. We remark
that the integration procedure proposed here hinges on using the form (1.4), rather than the
form

c(x, t) = ta/m(0), (1.5)

which is commonly adopted in the literature, where (r) = 2/m 0(). Moreover we have
chosen the constant to parameterize the solution so that zero provides the similarity
solution

c(x,t) = (4), 5 = /2, (1.6)

which applies to all nonlinear diffusivities D(c).
In the following section we summarize the main known exact solutions of nonlinear

diffusion. In the section thereafter we examine the second-order ordinary differential
equation arising from (1.2) and (1.4) and propose a new integration procedure which
generates values of A for which the second-order differential equation admits a first integral.
For one-dimensional diffusion with power law diffusivity, the two values of providing a
first integral are

-m -mA 2= (1.7)
(m + 2)' (m + 1)'

and curiously enough these are precisely the values of A which apply for the point source sol-
ution (2.6) and the so-called "dipole-solution" (2.7) respectively. Moreover these solutions
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emerge from our analysis when the constant of integration in the first integral is set to zero.
Our integration procedure is both elementary and quite general and in subsequent sections
we show that a first integral can be deduced in a wide variety of situations, which include
the exponential diffusivity, the power law diffusivity of index - 4/3 for which a more general
similarity solution applies, symmetrical diffusion in cylinders and spheres with power law
diffusivity and one-dimensional diffusion but with an inhomogeneous power law diffusivity
of the form

D(x, c) = cx" . (1.8)

We also demonstrate that if the second-order differential equation is known to admit a first
integral then our procedure seems to provide a systematic process of determining such a first
integral. For example Grundy [15] notes a special exact solution which emerges quite
naturally from our approach. This is done in Section 4.

Finally in this section we note other approaches to similarity solutions of nonlinear
diffusion. Grundy [15] provides an extensive phase plane analysis, Babu and Van Genuchten
[2] investigate perturbation solutions while Shampine [26, 27] and Gilding and Peletier
[13, 14] examine questions relating to existence and uniqueness. We also remark, as noted
by Lacey, Ockendon and Tayler [19] that the potential use of the comparison theorem of
Oleinik, Kalashnikov and Shzou Yui-Lin [21] provides further motivation for the con-
struction of as many diverse similarity solutions as possible which gives additional justi-
fication to this study.

2. A brief survey of known solutions

The similarity solution (1.6) is of particular interest in soil science. From (1.1) and (1.6) we
may readily deduce

(DO(/)') + = 0, (2.1)

where here and throughout primes denote differentiation with respect of . With bound-
ary conditions p(O) = 0 and 0(oo) = 1, Philip [25] and Brutsaert [8] integrate (2.1) to
obtain

D(0) = d 4 d (2.2)

and then for appropriate (o) calculate the diffusivity D (4) by means of (2.2) so as to obtain
an exact solution. Thus for example one such pair is

(,) = aqzB, D(4) - 2( (1 - 0b+), (2.3)
2( + 1)
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and an extensive table of other similar examples can be found in [8]. Fujita [10, 11] obtains
the exact general solutions of (2.1) in parametric form for power law diffusivities

D(c) = (c + )-', D(c) = (c + )- 2 (2.4)

Moreover Fujita [12] gives the general solution of (2.1) for

D(c) = o(c2 + yc + )-', (2.5)

where , / and y denote arbitrary constants. The Fujita solutions although exact are
complicated and need to be utilized with considerable care. The power law diffusivity of
index - 2 (namely (2.4)2) relates to the work of Storm [29] and Hill and Hart [17] have utilized
Fujita type solutions to obtain explicit representations for the Stefan problem in nonlinear
heat condition. The exact solutions of Knight and Philip [18] also relate to the power law
diffusivity of index - 2. For the general power law diffusivity, Parlange and Braddock [22]
and Parlange, Braddock and Chu [23] exploit transformations which give rise to first-order
ordinary differential equations which are solved numerically. In the remainder of this section
we catalogue known exact similarity solutions of (1.2) of the form (1.4) for which is
non-zero.

For A non-zero there are four known exact solutions each involving an arbitrary constant
C. The first corresponds to diffusion from an instantaneous point source and appears to have
been utilized by several authors (for example, Barenblatt [3], Zel'dovich and Kompaneets
[31], Lonngren, Ames, Hirose and Thomas [20], Pattle [24], Boyer [7] and Tuck [30]). This
solution occurs for = -m/(m + 2) and is given by

C(X, t) = ( C 
2
m/(m+ 2

) _ m ) (2.6)
x ( 2(m + 2) '

for ~4/(m+2) :< 2(m + 2)C/m and zero otherwise where x = x(m+2)12/t'l2. The second solution
due to Barenblatt and Zel'dovich [5] and noted in both Lacey, Ockendon and Tayler [19]
and Gilding and Peletier [13] occurs for = -m/(m + 1) and is given by

c(x, t) = I C m(3+2m )/ (m+') - 2(m ) (2.7)

for ~(m+2)/(m+1)2 < 2(m + 2)C/m and zero otherwise where here = x(m+')/t'2. We observe
that as C tends to zero we obtain from both (2.6) and (2.7) the well known "waiting-time"
solution discussed extensively by Lacey, Ockendon and Tayler [19], thus

c(x, ) = (2(m + 2)t) ' (2.8)

which can be deduced by the technique of separation of variables but is evidently also a
similarity solution. The remaining two similarity solutions of (1.2) which involve an arbitrary
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constant C are the solution which is a function of x only, namely

C(X, t) = Cx l /(m+'),

145

(2.9)

which applies for A = m/(m + 2) and the travelling wave solution (see Barenblatt [4])

(2.10)c(x, t) = (mC(Ct - x))l /m,

for x < Ct and zero otherwise and this applies for A = 1.
Finally in this section we note that (1.2) admits solutions of the form

C(X, t) = f()/tllm, (2.11)

which includes the waiting-time solution (2.8). From (1.2) and (2.11) we may readily deduce

(ff), + = O,
m

(2.12)

where here primes denote differentiation with respect to x. Equation (2.12) can be integrated
in a routine manner to give the first integral

2 fm+2
f,2 f = C

m(m + 2)'

from which we may deduce

Cm d/
21m + 2 1/2

m(m + 2))

= (x - x 0),

and we may readily verify that (2.8) emerges from equation (2.14) when the arbitrary
constant C is zero.

3. Power law diffusivity

On substituting (1.4) into (1.2) we may readily deduce the second-order ordinary differential
equation

~2(4om [ + mom-'" 2 ) + ( 4 + 3) bmb 'In

(3.1)
1) m+ + (2 + 1)22 ~ ]t=O

ff(x)f
(C -

(2.13)

(2.14)

+ 21 , + -
In 
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Although we make no essential use of the following, we note that (3.1) is usually reduced to
a first-order equation by making the substitution = 42/m"u(4) which generates an equation
of the Euler type. Thus with

du du
= log, p = d=/ (3.2)

we may deduce the first-order equation

dp 4
i+p m + (- + 1) - + 3) Put

+ ( 122+ 1 u ++ + =2 0. (3.3)

From this equation it is at least evident that the power law diffusivities with indices m = - 2
and m = -4/3 play privileged roles, as is well known.

The integration procedure exploited here hinges on the observation that equation (3.1)
consists of two types of terms, namely those arising from the spatial derivatives and that
arising from the time differentiation in (1.2). Accordingly we divide (3.1) by 3 so that the
term arising from the time differentiation is ready for integration and we arrange the
remainder in two steps, thus

(A + 1)2 _+ _4 + _2_ ___A _ _

2 m m m

+ [-( + 1 + 2 (_1 + 3 + 1)] 3l, (3.4)
m m (m + 1) m )

and clearly if the final term of this equation vanishes then (3.1) admits a first integral. This
term vanishes provided is a root of the quadratic

(m + 1)(m + 2)22 + m(2m + 3)2 + m2 = 0, (3.5)

which has roots given by (1.7). If = - m/(m + 2) then from (3.4) we have the first integral

qmOq¢ 2 2m + 2 _
4 ~ 2 + C24 (3.6)

r (m + 2)2 (m + 2)2 =

where Ca is the integration constant. If this constant is zero then from (3.6) we have

bm-1 (
'

2~ 2
= (m 2 m + 2 )2 (3.7)

(m + 2)2 (m + 2)2'
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which with the substituation z = Om integrates immediately to give the point source solution
(2.6). On the other hand if = - m/(m + 1) then (3.4) gives the first integral

4)m4) ' (2m + 3)4)m+1 4)2m + 3 C, (3.8)
a___ - (m + 1)252 2(m + 1)2

and if C, is zero we have

)m) (2m + 3) m - 13
______ -(m + 1)2 2 2(m + 1)2'

which with the same substitution z = Om integrates immediately to give the dipole solution
(2.7). Although the above procedure is completely elementary we now demonstrate that the
routine is effective in producing a first integral in a variety of situations.

4. Exponential diffusivity and similarity solutions involving exponentials

In this section it is convenient to deal with the two special situations of the exponential
diffusivity D(c) = oec and the similarity solutions involving the similarity variable xe - "' /2

where as usual oc and denote arbitrary constants. We first deal with the exponential
diffusivity which arises from the power law diffusivity in the limit as m tends to infinity and
in this limit we see from (1.7) that the values of 2 for which the second-order equation admits
a first integral both tend to minus one. As described in Hill [16] (problem 2, page 150) the
full similarity solution appropriate to the general power law diffusivity D(c) = o(c + f,*)m
takes the form

(C + *)m = [(1 + )x + K]2A/(I+))*((*), (4.1)

where the similarity variable o* is defined by

[(1 + )X + K]
/(

'
) (4.2)

t/2

where 2 has the same meaning as before and K is an arbitrary constant. Now with

m 1
* = -, K = (4.3)

it is not difficult to show that the appropriate similarity solution arising from (4.1) and (4.2)
in the limit as m - oo and - - 1 is given by

eyx

epc = e-2x0(o), o = e-- (4.4)
7/' 
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and moreover we anticipate that the second-order ordinary differential equation for 
admits a first integral, as indeed it does. From the nonlinear diffusion equation (1.1) with
exponential diffusivity D(c) = aeoc we have from (4.4)

3 ' y 2 " -3 o' + 44), (4.5)
24)

where here primes of course denote differentiation with respect to to. On dividing through
by co3 we may readily deduce the first integral

o' 2 + 2 2 log = C,, (4.6)

as expected. Finally for completeness, for the exponential diffusivity we also note the
solution

e(x - Xo) 2 + C
efc = 2(t -t '(4.7)

2a(t - t) '

where x0, to and C are all constants. This solution, which was originally noted in Smyth and
Hill [28], can be readily deduced from the assumption c(x, t) = f(x) + g(t) and represents
the limiting solution which corresponds to (2.11) as m tends to infinity.

Another class of similarity solutions discussed by Gilding and Peletier [13, 14] and Grundy
[15], applicable to the nonlinear diffusion equation with power law diffusivity, is given by

c(x, t) = x2l/m(), = xe- mt/ 2, (4.8)

where a is a constant. From (1.2) and (4.8) we have

0 = 2l(0m + ) 2 + ) )m ,+4 l+ l +2 m m m
(4.9)

which on dividing by 5 gives

_ a-'m = + 3) +- 1 + m3m (4.10)
2 (m + 1) m m 

which can be integrated in the case m = -2 and we obtain the first integral

o4 '2 = C,. (4.11)d'~~= 1
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This can be rearranged to provide the separable integral

I(r2 + 1) + C2, (4.12)

for which various explicit forms can be obtained depending on the constants and C1. This
is precisely the exact solution noted by Grundy [15] in an appendix.

5. Power law diffusivity of index -4/3

As noted previously the nonlinear diffusion equation (1.1) with special power law diffusivity
D(c) = o(c + fl)-413 admits a wider class of similarity solutions. From either Bluman and
Cole [6] (page 297) or Hill [16] (page 144) we can show that the more general similarity
solution takes the form

c+f = 4() (5.1)
[(X - X1)'-a(X - 2)+a]3 / 2

where the similarity variable , is defined by

1 X- X 
1 (t + )1/2 X -- X 2 (5.2)

where x, and x2 denote the roots of the quadratic equation,

/x 2 + (1 + )X + K = 0, (5.3)

assuming (1 + )2 > 4 K, that is

x, = {-(1 + ) + [(1 + )2 - 4]'12/2#,

(5.4)
X2 = {-(1 + ) - [(1 + )2 - 4K]11/2}/2,

and a denotes [(1 + 2)2 - 4K]
-

1/2
. We note that the functional form (5.1) and similarity

variable (5.2) are obtained by solving the first-order partial differential equation

ac ac 3
x 2 + (1 + )x + K] + 2(t + ) - (C + (2u + ), (5.5)

by the usual Lagrange characteristic method which is adequately described in either of the
two references cited. We also note that here we have included translational constants K, 6
and fB on x, t and c respectively. The constants 6 and /f are not essential but it is useful to
retain K non-zero. Finally we remark that with K, 6 and /f all zero, the similarity solution (1.4)
arises from the above in the limit as # tends to zero, provided that we take appropriate care
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with the limiting process. In particular we need the results,

x, - + O(p), x2- + O(1),
(1+ )

(1+ A)) 1 (I + )-) (5.6)

where 4 and are understood to be that involved in (1.4) with m = -4/3.
After a long calculation we can deduce from (1.1) with D(c) = a(c + fl)-413 and the

above, the following second-order ordinary differential equation

3 1 1 4 ; - 9~;'/3~':> + ~~;1/3[1 - 4, I + V = 0. (5.7)2 I-- I 13
1 + - + 3)-1/3

[(1 + )2 _ 4p# - 1] + 2 o qb1 = 0 (57)

Before proceeding to a first integral of (5.7) we observe for completeness that this equation
can be reduced to a first-order equation by means of the substitution = 13/2u, (5,) which
again generates an equation of the Euler type, so that with

du, du,
1 = log1 ,, p, = d du (5.8)

we may deduce

pi du1 3u41
" + ul [(l + )2 - 4K] + 4/39

In the limit u tending to zero, this equation can be reconciled completely with (3.3) with
m = - 4/3 noting that from (5.6)3,4 and the equations

U = 3/2 01 P = ~11 (3/2 1),
- 1 :'1 Pi = (124, (5.10)

we may deduce the approximate relations

Ul -U, P - - P, (5.11)(1 i)
3/ 2

(1 + i )
3
/

2
(5.11)

valid for u tending to zero where u and p are precisely as defined in Section 3 with
m = -4/3. On using (5.11) in (5.9) we may confirm that in the limit as pu tends to zero we
obtain precisely equation (3.3) with m = -4/3.

In order to deduce a first integral of (5.7) we follow the usual procedure and divide by 3
to obtain

k( )4 3°) + +/3) [(l + ) - 2 =
-- - + ~ [(1 - 3) 2 4 -- 9] + 4 = 0, (5.12)



Similarity solutions for nonlinear diffusion

which evidently can be integrated provided that the constants, , and K are such that

(1 + )2 - 4 K = 9,

and the first integral in this case becomes

14/3 3 '- /3 2 = C
, I4,:1 3 + ~ = c,.

51 52 2c

(5.13)

(5.14)

We have purposely retained the translational freedom in x in this section because the
constraint (5.13) evidently involves the constant K. If K is zero then (5.13) immediately gives
either i = 2 or A = -4. If the integration constant C, is zero then (5.14) gives

'j- 7/3'tj 3z3'- 413
_ 2

51 01 2a

which with the substitution z, = c - 4/3 can be readily integrated to yield

=,(4, ( + a ) _ 3/4
(/1(41) =~ C4/ - lt '-9-~/

(5.15)

(5.16)

which is a new exact solution valid provided that , p and K are such that (5.13) holds. If
this is the case then a = 1/3 and (5.1) and (5.2) give

c + = (xx 1 )(
(X - Xl)(X - X2)

2 '

1 x - x, 11 3

(l = (t + )'I/2 X - X2
(5.17)

where x, and x2 are given by

x, = (2 - )/2/, x2 = -(4 + )/2, (5.18)

and we observe that if the constant K is zero, then the two possible values of 2 (namely A = 2
or = 4) are such that either x, or x2 is zero.

Finally in this section we compare this new solution with the point source and dipole
solutions (2.6) and (2.7) respectively. For comparison purposes we take. /B, 6 and K to be zero
so that i = 2 or A = -4. For m = -4/3 we have = -m/(m + 2) = 2 and the point
source solution (2.6) becomes

c(x, t) = (C- 4 + 52)-3/4 ( t 3 4 /3
Cx t= = /2X X C )

(5.19)

while if = 2 the new solution (5.17) gives

(C 4 + B2)- 3 /4
c~x = x(x + a)2

1 / t 3/4 t x /3

(x + a)3/2 Bx2 + Ct3(x + a)2 41 = t1/2(x + a)/3,
(5.20)
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where a = 3/,u and B = 2/9a. On the other hand for m = -4/3 we have = -m/
(m + 1) = -4 and the dipole solution (2.7) becomes

(C-4 + 2)-3/4 1 t 4 1
c(x, t) x2 = 32( tl/2xl/ , (5.21)

while if A = -4 the new solution (5.17) gives

(C 4 + B12)-3/4 1 t /4 ( - a)13
c(, t) = x(x - a) = X3 2 B(x -a)

2 + Ct3 1 t/2X/3 (5.22)

where a and B are precisely as previously defined. We observe that (5.22) is exactly (5.20)
with a translation on x, that is, if in (5.20) we translate x to x - a this gives precisely (5.22).
Further on noting that (5.19) and (5.21) apply to (1 2) which has a set to unity, we observe
that with this value of c, B = a- 2 and (5.19) and (5.21) emerge from the new solutions (5.20)
and (5.22) respectively in the limit a tending to infinity, that is # tending to zero.

6. First integrals for a general euation

In this section it is convenient to deal with the general equation

c ,a r ac 
= C.x"I' J (6.1)

for arbitrary 1, m and n, from which the two important special cases I = -n and I = 0
detailed below can be readily deduced. It is not difficult to establish that (6.1) admits
similarity solutions of the form

x/(1 +.)
c(x, t) = xA/m4>(), = 2 (6.2)

where the constant A is defined by

22
A = (1 (n + ). (6.3)(1 + )

On substituting (6.2) into (6.1) the resulting second-order ordinary differential equation can
be rearranged to give

4>__ m + + i 2A + 2A + m+l (1 + -A)2 f+

| 4 + l)lM + ) ) n2 2

+ -( +A +-n - 1 (1 + )2+ 2
m (m ) m + (

x + 2A + (1 ) + n- 1) 3+= 0, (6.4)
"(2A( + l)5
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which clearly admits a first integral provided the final term vanishes and the condition for
the vanishing of this term is a quadratic equation in A with the two roots,

A (m + 1) {(+ ) + 1 (m + 1)(1 +) (6.5)

These equations can be rearranged to give the following values of 2 for which a first integral
can be readily obtained, namely

(6.6)

m 2- (m 2 I) nO ' ( 2m -(I + n)(m + 1)

and the first integrals corresponding to these values are, respectively,

m+ 1 ) ( + (-) --+ = C1,

--- --(m + I n 1 (1 +A))-~--+ (+) = C(.7

The first important special case of the above corresponds to symmetrical diffusion in
cylinders and spheres and arises from the case I = - n and n = 1 for cylinders while n = 2
for spheres. In this situation we obtain from (6.6) the following two values of 2,

= -m(n + 1) = -m (6.8)
(m + 2 + mn)' (m + 1)'

with corresponding first integrals obtained from (6.7)

m_'' 2(n + 1) + ' 20
(m + 2 + mn) 2 (m + 2 + mn)2 = C

(6.9)
42mn(b (2m + 3 - n) __M+

__ - (m + 1)2 2 +2(m + 1)2 =

which incidentally coincide with (3.6) and (3.8) respectively when n is zero. If we take
the constants of integration to be zero then we obtain from (6.9) the appropriate multi-
dimensional versions of the point source and dipole solutions (see for example, Barenblatt
[3] and Barenblatt and Zel'dovich [5]). We observe, curiously enough that for the cylinder
(n = 1) the two values of A and the two integrals coincide.

The second important special case of the above corresponds to one-dimensional diffusion
but with an inhomogeneous power law diffusivity of the form (1.8) and arises from the
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case 1 = 0. From (6.6) we have the following two values of A,

(m - n) 2m - n(m + 1)

(mr- n + 2)' (m + I)(n - 2)'

while from (6.7) we may deduce the corresponding first integrals

¢>mnet 2 0m+l 2

(m - n + 2) 2 (m - n + 2)2 = C

bm5 _2[m(n - 2) + 2n - 3]m+' 20 (6.11)

(m + 1)2(n - 2) 2 (m + 1)2(n - 2)2 =

7. Conclusion

For a wide variety of situations involving similarity solutions of the nonlinear diffusion
equation (1.1) we have proposed a simple procedure to deduce first integrals of the governing
second-order ordinary differential equation and as far as the author is aware these results
have not been given previously. The major known exact solutions (namely (2.6) and (2.7))
arise from our first integral when the constant of integration is taken to be zero and other
special exact solutions emerge naturally from our procedure. A new exact solution for the
power law diffusivity of index - 4/3 is deduced in Section 5. The derived first integrals give
rise to a large number of first-order ordinary differential equations, which although not
immediately integrable by standard devices, nevertheless deserve consideration either for
exact integrals in special cases or numerical integration for particular problems and these
areas will form the basis of a future study.
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